


11111111111

DSCope U2P20

USB-based Digital Oscilloscope

Key Features

- 2 analog channels
- 50MHz bandwidth
- Up to 200MSa/s sample rate
- Up to 256Mbits hardware memory
- Ultra-portable size
- Unibody aluminum case
- 3-year warranty

Connectivity

- Main Type-C USB 2.0 interface
- Auxiliary Type-C USB interface
- BNC connectors (Standard Probe Interface)
- Extension interface (Pogo Pin Connector)

Power Source

Power source voltage: 5V_{DC}±5%
Power consumption: 2.5 W maximum

Input output ports

	Direction	Descriptions	Protected Voltage Range
Main USB 2.0 data port	InOut	Connect to host computer	4.75v ~ 5.25v
Auxiliary USB power port	Input	Auxiliary power	4.5v ~ 5.5v
BNC connectors	Input	Connect to probes	-100v ~ +100v (DC+AC)
Extension interface	InOut	Extension probes and module	0-3.3v
Probe compensator	Output	3v // ~1KHz square wave	

Designed to make your work enjoyable

DSCope U2P20 is a USB-based digital oscilloscope, which has a portable size (115x74x16mm), but powerful performance (up to 200MSa/s sample rate). With the easy-to-use and cross platform software, DSView, you can use your favorite computer to debug and analysis your circuits, observe the analog wave and its frequency spectrum at anywhere and anytime.

Technical Specifications

Vertical system

Analog Bandwidth:	50MHz	
Input coupling:	DC or AC	
Input impedance:	1MΩ // ~20pF	
Input sensitivity range:	10mV/Div to 2V/Div	
Vertical resolution:	8bits	
Maximum input voltage:	peaks $\leq \pm 100 V$	
DC gain accuracy:	$\pm 6\%$	
Vertical position range:	± 5 divisions	
Vertical offset ranges:	Volts/Div setting	Offset rang
	10mV/Div ~ 2V/Div	\pm 100mV ~ \pm 20V/Div
Common mode rejection ratio(CMRR):		
Channel-to-channel isolation:		

Horizontal system

Maximum sample rate (single channel)	200MSa/s
Maximum sample rate (dual channel)	100MSa/s
Time base range:	10ns/Div to 10s/Div
Maximum duration of time	10ms (real-time capture)
captured at highest sample rate (all channels):	100ms (single capture)
Record Length (real-time capture):	1M (dual channel)
	2M (single channel)
Record Length (single capture):	16M (dual channel)
	32M (single channel)

Trigger system

Trigger mode:	Auto	
	Normal (ch0, ch1, ch0 & ch1, ch0 ch1)	
Trigger position range:	1% ~ 99% of record length	
Trigger holdoff range:	1 us ~ 10 s	
Trigger types:	Edge (rising or falling)	
Sensitivity:	0 ~ 0.625 vertical division	
Trigger level ranges:	± 4.4 vertical division from center screen	

Waveform measurements

Cursors:	Horizontal Width/Frequency/Period/Duty	
	Vertical Amplitude	
Automated measurements:	Frequency / Period / +Duty /- Duty / +Count	
	Rise / Fall / +Width / -Width / BrstW	
	Amplitude / High / Low / RMS / Mean	
	Pk-Pk / Max / Min / +Over / -OVer	

Waveform math

FFT:	Spectrum magnitude
	Length: 1K ~ 16K
	Vertical scale: Linear RMS or DBV RMS
	Window: Rectangle, Hann, Hamming, Blackman, Flat_top
Math:	Add / Subtract / Multiply / Divide

Waveform display

Time domain:	Real-time view	
	Single capture view	
X-Y mode:	Lissajous Figure	

System Requirements

Windows XP, Vista, Win7, Win8 & Win10

Mac OS X 10.12 or above

Linux: Ubuntu, Fedora, Arch, etc.

USB 2.0 Host port

Safety & Caution

- If you are using a mains powered (grounded) host computer, the ground terminals of DSCope is also connected to the real ground, you must avoid to connect any ground terminals to HOT DUTs.
- DSCope has the overcurrent protection, but we recommend that you should try to avoid any short circuit event. After all the ability of upstream USB port is an uncertain factor.

Revision History

The following table shows the revision history for this document.

Date(DD/MM/YY)	Version	Revision
18/02/20	v2.1	Minor fix (based on DSView v1.10)
10/09/19	v2.0	Functional Enhancement (based on DSView v1.00)
01/08/19	v1.1	BNC model (based on DSView v0.99)
01/07/18	v1.0	Initial release (based on DSView v0.99)